Automated Geospatial Watershed Assessment (AGWA): A GIS-Based Hydrologic Modeling Tool for Watershed Assessments

Project Background & Acknowledgements

- Long-Term Research Project
 - EPA Landscape Ecology Branch
 - EPA Office of Water
 - 10 years
- Interdisciplinary
 - Watershed management
 - Landscape ecology
 - Remote sensing
 - GIS
- Multi-Agency
 - USDA ARS
 - US EPA
 - University of Arizona
 - University of Wyoming

USDA-ARS David Goodrich Soren Scott Shea Burns Mariano Hernandez Lainie Levick **Averill Cate US-EPA Bill Kepner Darius Semmens Bruce Jones Don Ebert** University of Arizona **Phil Guertin Ryan Miller** University of Wyoming **Scott Miller Ginger Paige**

AGWA Background

- System Features with emphasis on new functionality of the just released AGWA 1.5
- Selected case studies
- Future Directions

Objectives of the AGWA tool

- PC-based GIS tool for watershed modeling
 - Can accommodate multiple hydrological models (*modular*)
- Investigate the impacts of land cover change, and management practices, on runoff, erosion, water quality
- Targeted for use by scientists, management specialists, and engineers
 - Ease of use
 - Widely applicable

Objectives of the AGWA tool

- Simple, direct method for model parameterization
- Provide realistic, repeatable results
- Require basic, attainable GIS data
 - 30m USGS DEM (free, US coverage)
 - STATSGO, SURRGO, FAO soil data (US and global coverage)
 - US-EPA NALC, MRLC, and GAP landscape data
- Useful for scenario development, alternative futures simulation work, and watershed assessments
 - Provide <u>relative change</u> when validation data is insufficient

Modeling the Impacts of Land Cover Change and Best Management Practices

- Two models utilized to account for a range of space and time scales
 - KINEROS (smaller basins, events design storms)
 - SWAT (Large basins daily/annual)
- AGWA used for assessing flooding, water supply, and water quality
- Has been applied across a range of landscape, precipitation regimes

Soil Water and Assessment Tool (SWAT)

- Daily time step
- Distributed: empirical and physically-based model
- Curve-number based infiltration
- Hydrology, sediment, nutrient, and pesticide yields
- Larger watersheds (> 1,000 km²)

Kinematic Runoff and Erosion Model (KINEROS2)

- Event-based (< minute time steps)
- Distributed: physically-based model with dynamic routing
- Hydrology, erosion, sediment transport
- Typically applied to smaller watersheds (100-200 km²)
- Enable direct tracking of BMPs / land use on downstream impacts

AGWA 1.5 ArcView Interface

AGWA Conceptual Design: Inputs and Outputs

Watershed Delineation Watershed Discretization using Digital Elevation **Intersect model** (model elements) Model (DEM) elements with Soils Land Cove Output results that can be displayed in AGWA **KINEROS** Outputs SWAT Outputs Rain 4 Channel Infiltration (m³/km) **Precipitation (mm)** (Observed or **Plane Infiltration (mm)** ET (mm) **Design Storm**) Run model and import Runoff (mm or m³) **Percolation (mm)** aculte Sediment yield (kg) Channel Disch. (m³/day) Transmission loss (mm) Peak flow (m³/s or mm/hr) Results **Channel Scour (mm)** Water yield (mm) Sediment discharge (kg/s) Sediment yield (t/ha)

Visualization of Results

New Tools to be released in: AGWA 1.5 (ArcView) - Current AGWA 2.0 (ARCGIS and BASINS 4.0); and, DotAGWA (Internet) - 2007

- "Area of Interest" simultaneous multiple watershed analysis
- Multiple internal gauges
- KINEROS stream buffer strip tool
- 2 new land-cover modification options
- Hydrologic Response Unit definition and Nutrient modeling for SWAT
- Post-fire watershed assessment

Area of Interest Multiple Watershed Analysis

- Interactively locates multiple watershed outlets
- Outlet ID uses the stream network & boundary polygons
 - Attempts to cover the area with the fewest, and smallest, watersheds necessary
- Discretized watersheds form a watershed group that is parameterized and simulated as one unit

KINEROS Stream Buffer Tool

- User-defined geometry (length and width) for each buffer on the watershed
- Can be parameterized for pre- and posttreatment scenarios
 - Post-treatment scenario allows users to select a new landcover and slope for the buffer element
- Simulation models the runoff-runon process via interactive infiltration in KINEROS

Land Cover Modification Tool

Allows users to examine the effects of different management practices on water quantity and quality at the watershed scale

Options

- Uniform Change existing option: Userdefined polygon change from one land cover class to another
- For more realistic surface change a choice of two random surfaces is provided:
 - Allows change of an area to a new landcover or landcovers
 - Randomly distributed landcover patches -Two-dimensional midpoint displacement multifractal surface
 - Completely spatially random surface

HRUs and Nutrient Modeling (SWAT)

- Characterizes <u>HRUs</u> in a subwatershed based on unique land cover attributes.
 - Users can define land cover and land use parameters for any land cover classification.

- Nutrient modeling provides estimates for nitrogen and phosphorus loading from subwatershed elements and in the channels
- Requires no additional inputs
- Management scenarios can be simulated by changing the default land cover parameters

Outputs

Sediment Yield (t/ha) Organic Nitrogen (kg) Organic Phosphorus (kg) Mineral Phosphorus (kg) Nitrate/Nitrite Concentration (kg)

Urbanization – Multi-Scale Application

- Using SWAT and KINEROS for integrated watershed assessment
- Land cover change analysis and impact on hydrologic response

AGWA-SWAT Aspen Post-Fire Assessment

Pre-fire Est. Curve Numbers f(Hydro. Soils Group, Cover Type)

Post-Fire Curve Number Map f(Hydro. Soils Group, Cover, Burn Severity)

Overlay Burn Severity Map

Estimated Percent Change in Water Yield in First Year Following Aspen Fire

Future Directions

- 1-D Dynamic geomorphic model channel erosion / deposition
- Enhanced ground-water parameterization for SWAT
- Mult. hydraulic-geometry relations for channel characterization
- Incorporation of WEPP erosion relations in KINEROS
- KINER-OPUS Coupling underway
 - OPUS simulation model for transport of non-point source pollutants
 - Continuous, plant growth, nitrogen, phosphorus, carbon, snow, and management
- AGWA 2.0 (ARCGIS 9.1) incorporation into BASINS 4.0
- DotAGWA Internet version 2007

Pre- and Post-fire Watershed Assessent with SWReGAP Data

Basin

Contacts Credits

Recent Additions | Contact Us | Print Version Search: EPA Home > Landscape Ecology > Projects > Nevada Geospatial Data Browse

Nevada Geospatial Data Browser

U.S. Environmental Protection Agency

Nevada Geospatial Data Browser Text & Tabular Data Graphic Data Midas Nevada Reno Rock Ck Las Vegas

Evaluate the post – fire hydrologic response of the Hot Lakes & Buffalo wildfires (Aug. 2001) in northern Nevada using AWGA and SWReGAP land cover and additional datasets from the Nevada **Data Browser**

ACQUIRED SPATIAL DATA

- Fire History (1981-2002)
- National Elevation Dataset DEM
- Land Cover (GAP) 1999-2001
- STATSGO Soil Data

- Climate Data (Daily Total Precipitation)
 (NCDC, 15 gages, or PRISM derived daily Ppt on the Nevada Data Browser) 1980-2004
- Daily Stream Flow Data (USGS 10324500 Rock CK NR Battle Mountain, NV) 1980-2004

ROCK RIVER BASIN: LAND COVER (GAP) '99-'01

Legend

Inter-Mountain Basins Big Sagebrush Shrubland
 Inter-Mountain Basins Montane Sagebrush Steppe
 Invasive Annual Grassland
 Great Basin Xeric Mixed Sagebrush Shrubland
 Invasive Annual and Biennial Forbland
 Invasive Perennial Grassland
 Rocky Mountain Aspen Forest and Woodland

- Relief: 1863 m
- Basin Area: 2,237 km²
- Mean daily discharge: 1.10 m³/s
- Mean annual Precip.: 320 mm
- Mean air temperature: 9.4 °C

Land cover distribution

WILDFIRE BOUNDARIES

Date = Aug 14, 2001 Area = 236 km² (~10% of total drainage area)

Legend

Fire Area

- Inter-Mountain Basins Big Sagebrush Shrubland
- Inter-Mountain Basins Montane Sagebrush Steppe
- Invasive Annual Grassland
- Great Basin Xeric Mixed Sagebrush Shrubland
- Invasive Annual and Biennial Forbland
- Invasive Perennial Grassland
- Rocky Mountain Aspen Forest and Woodland

WATERSHED DISCRETIZATION

MODEL CALIBRATION RESULTS

Pre-Fire Simulation Period 1980-2000

Descriptive	Annual Water Yield		Annual	
Statistics	Obs	Sim	Precipitation	
	(mm)	(mm)	(mm)	
Mean	21	19	347	
Standard Dev.	22	17	101	
Efficiency	0.70			100

PRE-FIRE ANNUAL WATERSHED RESPONSE (Year 2000)

FIRST YEAR POST- FIRE WATERSHED RESPONSE PERCENT CHANGE

Post-Fire Assessments Conclusions

 AGWA and GAP Land Cover data together can be used to evaluate the impact of wildfire on the hydrologic response sagebrush shrubland-dominated rangelands

 Pre-fire data and simulations can be done for any given watershed at any time in a non-crisis environment

- Directly import post-fire burn severity map as a shape file
- Run model with same rainfall input as pre-fire simulation
- Difference post- and pre-fire simulations and spatially display results

 Allows rapid visual ID of watershed areas most prone to post-fire impacts so mitigation and remediation can be targeted

of